Meta-learning via Language Model **In-context Tuning**

Work done during summer internship at AWS AI.

Yanda Chen*, Ruiqi Zhong, Sheng Zha, George Karypis, He He

Few-Shot Learning

Quickly learns a *new* task with *few* labeled examples

Sentiment Classification **NEW!**

x^{target}: "The movie is boring.", y^{target}:? xtarget: "This movie is exciting!", ytarget: ?

.

 x_1 : "I like the movie!", y_1 = Positive \bigoplus x_2 : "Horrible movie!", y_2 = Negative Θ

2

Few-Shot Learning

• Why we care?

Save annotation efforts

• Human-like Al

LM Prompting for FSL

LM Prompting

Few-shot Learning

 x_1 : "I like the movie!", y_1 = Positive x_2 : "Horrible movie!", y_2 = Negative

What is the sentiment of this review? I like the movie! Positive. Horrible movie! Negative. This movie is boring. ____ -> Negative


```
Chemistry is the study of _____ -> matter and change.
Football is played by _____ -> two teams of eleven players.
```

x^{target}: "The movie is boring.", y^{target}:?

 $I \circ x_1 \circ y_1 \circ x_2 \circ y_2 \circ x_1$ arget $\longrightarrow \hat{y}$ target

In-context Learning! (ICL)

Oversensitivity

instruction wording (Schick and Schütze, 2021)

"What is the sentiment of this review?" vs. "Sentiment of this review?"

- example ordering (Liu et al., 2021)
- example selection (Liu et al., 2021)

$I \circ \square \circ \bigwedge \circ \chi$ target vs. $I \circ \bigwedge \circ \square \circ \chi$ target

Root Cause

Chemistry is the study of _____ -> matter and change. Football is played by _____ -> two teams of eleven players.

What is the sentiment of this review? I like the movie! Positive. This is a total waste of time. ____ -> Negative

In-context Tuning (ICT) META-LEARNING!

Fine-tune LMs to learn in-context learning on various tasks

- What is the sentiment of this review? I like the movie! Positive. This is a total waste of time. _____ -> Negative
- Is this text spam? Free entry in 2 a wkly comp to win FA Cup final tkts. Yes. XXXMobileMovieClub: click the WAP link. _____ -> Yes

What is the emotion of the text? This is so annoying! Anger. This is such an enjoyment. Happiness. I'm so sad. \longrightarrow ?

A Meta-learning Perspective $(x_1, y_1), (x_2, y_2)$ Adapt

- **MAML**: fine-tune on $(x_1, y_1), (x_2, y_2)$ —> evaluate on x^{target} (model weights updated with gradient descent)
- In-context Tuning: $I \circ x_1 \circ y_1 \circ x_2 \circ y_2 \circ x^{\text{target}} \circ$ (model weights frozen)

Predict

Datasets (LAMA)

Relation: Subject —> Object

Relation = born in

Kandi Burruss —> Atlanta

- Prediction accuracy
- ~30 different tasks

Relation = capital of Minsk -> Belarus

Datasets (BinaryClfs)

- ~200 binary classification tasks
 - sentiment classification
 - stance classification
 - spam classification

• AUC-ROC

...

Models

- LAMA \bullet
- BinaryClfs
 - GPT2 GPT2-Medium [345M], GPT2-Large [774M]

• BERT - BERT-Base [110M], BERT-Large [340M], DeBERTa-xLarge [900M]

Accuracy

- **ICT** > LM Prompting?
- **ICT** > MAML?
- More few-shot examples —> Better ICT?

Does ICT improve ICL accuracy?

Aligning Train / Test objectives improves few-shot ICL.

How does **ICT** compare to **MAML**?

- **ICT** benefits from the inductive bias of LMs to do pattern matching.

Are more few-shot examples better?

Overse stivity ICT is much less sensitive!

- instruction wording (Schick and Schütze, 2021)
- example ordering (Liu et al., 2021)
- example selection (Liu et al., 2021)

"What is the sentiment of this review?" vs. "Sentiment of this review?"

 $I \circ \square \circ \bigwedge \circ \chi$ target vs. $I \circ \bigwedge \circ \square \circ \chi$ target

Sensitivity (lower better)

In-context Tuning reduces sensitivity significantly.

Conclusion & Takeaways

- We propose In-context Tuning (ICT) for few-shot learning.
 - A meta-learning approach
 - Task adaptation: in-context learning (no gradient update)
- Accuracy: ICT > LM Prompting & MAML
- Sensitivity: ICT is significantly less sensitive than LM Prompting

Future Directions

- Meta-learning for robustness
 - Distribution shift, rare subgroups, adversarial attacks
- Understanding in-context learning
 - Why it works?
 - Is in-context learning more robust to distribution shift?
 - Can we combine in-context learning with fine-tuning?

Paper: https://aclanthology.org/2022.acl-long.53.pdf

Code: <u>https://github.com/yandachen/In-context-Tuning</u>

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, He He

